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POWER S P E C T R U M  OF T A N G E N T I A L  STRESS ON A 
W A L L  I N  A T U R B U L E N T  F L O W  

A. V. Chinak UDC 532.517.4 

The mechanism of formation of the tangential stress spectrum on a wall in a developed turbulent flow is 

considered. An interpretation of spectra obtained experimentally is proposed. It is shown that the spectrum 

contains information on the viscous sublayer thickness and enables us to perform nonprecision measure- 

ments of tangential stress on the wall in the developed turbulent flow with no precalibration of sensors. 

In practice it is often necessary to obtain information on a flow with a method that is sufficiently simple 

in realization and introduces no disturbances into the flow. One possibility for this is measuring tangential friction 

on a wall using an electrodiffusion method [1 ]. Measurements [2 -4 ]  show that the spectrum of tangential stress 

on the wall and the spectrum of velocity pulsations in the viscous wall region differ from the velocity spectrum in 
the core of the turbulent flow. In [2 ] the spectrum of wall friction is compared with the results of a linear analysis. 

This comparison shows the adequacy of the model for describing the high-frequency portion of the spectrum. To 
model pulsations in the wall region, use is made of experimental data on the pressure spectrum [5 ] and the wave 

structure of velocity pulsations [6 ]. The spectra are represented in dimensionless variables: n/-So; WS0/(-Sx)2(where 

n is the frequency, (-gx) 2 is the root-mean-square pulsations of tangential stress on the wall in the direction of the 
flow, S0 = V*2/v, V* is the dynamic velocity), which enable us to generalize data obtained at different Re. 

In [7 ] results of investigations of turbulence in the wall region in a tube with Re = 8700 are given. Profiles 

of the average velocity and spectra of velocity pulsations in a viscous sublayer and outside it are presented. Data 

on pulsation and average characteristics obtained in gas-liquid bubble flows are given in [3, 4 ]. In a dimensionless 

representation the spectra of tangential stress on a wall in a lowering bubble flow hardly differ from single-phase 

spectra. In [8 ], to describe the field of velocity pulsations between the wall and the region of a developed turbulent 
flow, use is made of a simplified linearized form of the equations of motion; Klebanoff's experimental data [9 ] are 

used as boundary conditions for the pulsation component of velocity on the external boundary of the viscous 

sublayer.  

The aim of the present work is to elucidate, by using simple considerations, the dependence of the form 

of the tangential stress pulsation spectrum on the wall on the averaged characteristics of the flow. 

We consider the propagation of velocity disturbances from the external boundary of the viscous layer toward 

the wall. For simplicity, we consider the viscous sublayer to be a thin layer of liquid at the wall of thickness 6, with 

this layer having negligibly small inertia effects, and the average velocity profile is linear in y (Fig. 1). Experiments 

show that with an increase in the dimensionless frequency n/-So from 10 -a to 10-1 the spectral density of pulsations 

of tangential stress on the wall decreases approximately 1000-fold. In its physical meaning the dimensionless 

frequency in this case is the ratio of the thickness of the viscous sublayer to the wavelength of the disturbance. 
Taking into account the above-said, we will deal with disturbances with a wavelength much greater than the 
thickness of the viscous sublayer and consider the flow as uniform along the direction of flow. Then in the bound- 

ary-layer approximation for the two-dimensional case we can write the equation of motion in the simplified 
linearized form 

OV I OP 02V 
. . . . .  + v (1) 
c)t p dx Oy 2 

Institute of Thermal Physics, Novosibirsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 67, Nos. 
5-6, pp. 387-391, November-December, 1994, Original article submitted May 14, 1992; revision submitted February 
1, 1994. 

1026 1062-0125/94/6756-1026512.50 �9 1995 Plenum Publishing Corporation 



9 

/ /  

U 

. . . .  6 

/ / / / / /  / 

Fig. 1. Scheme of flow in the viscous wall region. 

with the boundary conditions 

V = 0  at y = O ,  V = V a + V '  at y = c 3 .  (2) 

The linearity of the equation of motion enables us to deal separately with the Fourier components of the pulsation 

velocity V'. This system of equations is satisfied by the following solution: 

T = (Va/6) y + V 1 (exp (ky)  cos ( n t  + ky )  - cos ( n t ) ) ,  (3) 

OP 
Ox V 1 p n  sin (n t )  

where k = v~7-2-~; V1 is a factor that makes the solution consistent with the boundary condition on the external 

boundary and has the form 

V 1 = Vo/(ex p (kcS) cos ( n t  1 + k 6 )  - cos (ntl)) , 

where tl = (1 /n)  arctan (sin (k6)/(exp (-kc3)-cos (k3)); V 0 is the velocity pulsation amplitude with the frequency 

n on the external boundary of the layer. Then for pulsations of the tangential stress on the wall we have 

o (V'y=o) 
Sx = - t~ Oy - - f ~ V l k  (cos (n t )  - sin (n t ) )  . 

By squaring and time-averaging this expression, for the power spectrum we find 

W = (,UVlk) 2 . (4) 

The expression obtained is a transmission function that  describes the relationship between velocity 

pulsations in the viscous sublayer and tangential stress pulsations on the wall, depending on the frequency, sublayer 

thickness, and properties of the liquid. Two free parameters remain that refer to the conditions on the external 

boundary: V 0 is the amplitude of the velocity pulsation harmonic with the frequency n on the external boundary; 

is the distance from the wall to the external boundary of the layer in question. In principle, we are entitled to 

specify the boundary conditions at any distance from the wall provided that the above assumptions of a small 
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Fig. 2. Calculated power spectra of tangential stress on the wall: 1) 5 + -- 8; 

2) 12; 3) 16; 4) 20. 

deviation of the average velocity profile from the linear one and small inertia effects are satisfied. Now we define 

c~ more precisely as the distance at which cascade energy transfer to small scales practically ceases and the velocity 

pulsation spectrum forms mainly by dissipation of the harmonics separately. This region will be referred to as the 

effective viscous sublayer, whose thickness is comparable to the viscous sublayer thickness. The meaning of this 

definition for 5 is that in this region we can introduce some simple assumptions concerning the velocity pulsation 

spectrum and need not resort to experiment in specifying boundary conditions on the external boundary. 

Velocity spectra obtained outside the viscous sublayer for y+ -- 10, 20, 40 and given in [7 ] have a flat 

low-frequency region, and the drop in the transmission function obtained by us begins at frequencies that are rather 

low compared to dissipative vortices and has a fairly steep character. Therefore we can assume that it is the 

transmission function (4) that is of crucial importance in the formation of velocity spectra in the viscous sublayer 

and tangential stress spectra on the wall, and the shape of the velocity spectrum on the external boundary does 

not introduce a large correction and can be considered as flat, i.e., 

V 0 = const. 

The value of this constant is eliminated from consideration in normalizing the spectrum: 

0 

An indirect corroboration of different mechanisms of velocity spectrum formation in the viscous sublayer 

and outside it is the fact that the appropriate dimensionless variables that generalize experimental data are found 

only for the spectrum in the viscous sublayer [7 ]. The assumptions made enable us to establish the relationship 

between the shape of the spectrum of tangential stress pulsations on the wall and some effective thickness 5 of the 

viscous sublayer. Figure 2 gives diagrams of the spectra, constructed for different 5, in dimensionless coordinates. 

We performed measurements in channels of different geometry: a plane channel (2 mm thick), a widening 

channel between parallel flat plates (the distance between the plates is 2 mm, the apex angle is 12 ~ and the distance 

between inclined walls at the measurement point is 25-90 mm) and a narrowing channel of the same geometry 

[10]. The measurements were performed by an electrodiffusion method [1 ]. We performed experiments using 
different sensors that confirmed the possibility Of using a sensor with dimensions of 20 ~m in the direction of the 
flow and 100/~m in the direction perpendicular to the flow. Results of measurements for different flows and 

Reynolds numbers in a dimensionless representation differ little. 
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Fig. 3. Comparison of the power spectra of tangential stress on the wall in a 

plane channel with the calculation: 1) calculation, 6 + = 14.5; 2) Re = 400; 3) 

Re = 5500; 4) Re = 9560. 

A comparison with the experiments shows that for a certain value of the parameter c~ we observe good 

agreement of the model with experiment. For single-phase turbulent flows in the plane channel (Fig. 3) or the tube 

this value was equal to 6 + = 14. Agreement of the model with the experiments is observed even with Re = 2700, 

constructed from the average velocity and channel  thickness. Somewhat different data were obtained in the 

narrowing channels, where 6 + _- 16. For developed turbulent flow in the widening channel we found that 6 + -- 14. 

Data for the two-phase flow [3, 4] are also readily generalized and correspond to the calculated curve for 

6 + = 14.5. Measurements were performed in a vertical tube 42 mm in diameter with velocities V "- 0 .5 -1 .25  m/sec.  

The gas content varied within fl = 2 - 1 5 % .  We performed measurements in a lowering f lowby an electrodiffusion 

method. 

A comparison of the above model with data obtained in a liquid with a polymer  added  [2 ] yields 

6 + = 10. But for this system we observe substantial differences in the character of the spectra, which manifest 

themselves  mainly  in the h igh- f requency  region. This  resul t  comes as no surprise and demons t ra tes  the 

inapplicability of the above model to non-Newtonian liquids. 

The data obtained enable us to conclude that in most cases the above assumptions concerning spectrum 

formation in the wall region are quite reasonable; the effective thickness of the viscous sublayer 6 obtained by 

considering the spectra is proportional to the viscous sublayer thickness and the value of tangential stress on the 

wall and is equal to 6 + -- 14.5. This enables us to perform nonprecision measurements of tangential stress on the 

wall over the pulsation spectrum. These measurements can be of importance for practical applications in flows where 

the calibration of sensors is hindered or requirements on accuracy are low. The accuracy of these measurements 

depends on the algorithm for comparing the measurements with calculations, the frequency characteristic of the 

measuring system, and the accuracy of determination of 6 requires further investigation. It is pertinent to note that 

the above reasoning refers mainly to the high-frequency portion of the spectrum since at low frequencies the 

transmission of velocity pulsations to the wall occurs with almost no damping and, consequently, this spectral 

portion carries information on velocity pulsations in the flow's core. 

The author expresses his thanks to the Soros Foundation, which has financed the work. 
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N O T A T I O N  

n, frequency, sec-1; Sx, x-component of tangential stress on the wall, Pa; s x, x-component of pulsations 
of tangential stress on the wall, Pa; V, velocity, m/sec; V', velocity pulsations, m/sec; I f  = (I-Sxl/p) 1/2, dynamic 
velocity; v, kinematic viscosity, m2/sec;/~, dynamic viscosity, kg/(m.sec); P, pressure, Pa; t, time, sec; p, density, 
kg/m3; W, spectral density, (N/m2)2; fl, volume gas content, %; y+ = V*y/v, dimensionless coordinate; 5 +=  
V*5/v, dimensionless thickness of the effective viscous layer. 
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